GCL Division 3 Play-Off 16-17
Played at Cathcart CC ending on 24/04/2017
Results compiled by Jim Johnston
Grading calculations last updated - 25/07/2017
GCL Division 3 Play-Off 16-17 League Table
| Boards |
| Matches | Played | Defaults | Score |
Pos | Team | Team Name | P | W | D | L | Pts | W | D | L | W | D | L | Boards | % |
1 | 1 | Paisley | 1 | 1 | 0 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | 2½ | 63 |
2 | 2 | Renfrewshire | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 1½ | 38 |
|
2 |
1 |
0 |
1 |
2 |
3 |
2 |
3 |
0 |
0 |
0 |
4 |
|
GCL Division 3 Play-Off 16-17 Crosstable
GCL Division 3 Play-Off 16-17 Match Results
Bd |
Grade |
Paisley |
(1) |
vs |
(2) |
Renfrewshire |
Grade |
Comments |
1 | 1607 | Crone, James | 0 | - | 1 | Thomas, Phil | 1795 | Away Win |
2 | 1600 | McKenna, John | 1 | - | 0 | Reid, Caitlin | 1406 | Home Win |
3 | 1534 | Gilmour, Thomas | ½ | - | ½ | Macgregor, Colin A | 1321 | Draw |
4 | 1140 | Burns, Daryl | 1 | - | 0 | Reid, William | 1122 | Home Win |
|
2½ | - | 1½ | |
GCL Division 3 Play-Off 16-17 Team Results
Team 1 - Paisley |
---|
| Grading Performance |
---|
Pool | Name | Club | Status | Grade | PNUM | Pts |
Plyd |
Opps |
Act |
Plyd |
Exp |
Diff |
Perf |
3 |
Gilmour, Thomas |
PA |
- |
1534 |
4091 |
½ |
1 |
1321 |
½ |
1 |
0.772 |
-0.272 |
1321 |
2 |
McKenna, John |
PA |
- |
1600 |
5128 |
1 |
1 |
1451 |
1 |
1 |
0.699 |
0.301 |
1851 |
1 |
Crone, James |
PA |
- |
1607 |
24117 |
0 |
1 |
1795 |
0 |
1 |
0.254 |
-0.254 |
1395 |
4 |
Burns, Daryl |
PA |
NEW |
1140 |
26436 |
1 |
1 |
1122 |
1 |
1 |
0.528 |
0.472 |
1522 |
Team 2 - Renfrewshire |
---|
| Grading Performance |
---|
Pool | Name | Club | Status | Grade | PNUM | Pts |
Plyd |
Opps |
Act |
Plyd |
Exp |
Diff |
Perf |
3 |
Macgregor, Colin A |
RS |
- |
1321 |
4776 |
½ |
1 |
1534 |
½ |
1 |
0.228 |
0.272 |
1534 |
4 |
Reid, William |
RS |
- |
1122 |
9557 |
0 |
1 |
1165 |
0 |
1 |
0.437 |
-0.437 |
765 |
1 |
Thomas, Phil |
HATR |
- |
1795 |
15971 |
1 |
1 |
1607 |
1 |
1 |
0.746 |
0.254 |
2007 |
2 |
Reid, Caitlin |
RS |
J17 |
1406 |
22203 |
0 |
1 |
1600 |
0 |
1 |
0.248 |
-0.248 |
1200 |